Time-resolved photoluminescence of Zn(OH)2 and its composites with graphite oxides.

Abstract

Time-resolved photoluminescence is used to determine carrier recombination through radiative and nonradiative processes in zinc hydroxide Zn(OH)(2) and its porous composites with graphite oxide (GO). The decay times, measured by a streak camera, are found to be larger for zinc hydroxide (~1215±156 ps) than its composites (~976±81 ps for ZnGO-2 and 742±59 ps for ZnGO-5), but no significant changes in rise times (from 4.0 to 5.0 ps) are recorded. The dominant mechanism for the radiative process is attributed to free carrier recombination, while microporous networks present in these materials are found to be pathways for the nonradiative recombination process via multiphonon emission.

Topics

    4 Figures and Tables

    Download Full PDF Version (Non-Commercial Use)